DESIGN AND STUDY OF PLANAR INVERTED-F ANTENNA FOR MOBILE DEVICES COVERING LTE/WLAN APPLICATIONS

Princy Gupta1, Pooja Sharma2

1,2Department of Electronics & Communication Engineering, Galaxy Global Educational Trust Group of Institutions, (Affiliated to Kurukshetra University), Dinarpur, Ambala

Abstract: A Planar Inverted-F Antenna for LTE2300 (2.3-2.4 GHz), WLAN (2.4-2.484 GHz), and LTE2500 (2.5-2.69 GHz) bands has been presented in this paper. The proposed structure has a dimension of 18 x 13 mm² over the ground plane of size 100 x 50 mm² which can easily be implanted in the small space available within the mobile device. The proposed structure is having an impedance bandwidth ranging from 2.16 GHz to 2.726 GHz covering all the desired frequency bands. The antenna has a resonating frequency at 2.395 GHz. For getting the impedance bandwidth we are taking -8 dB as the reference return loss. The VSWR, input impedance plot along with parametric study of some key parameters is presented. The radiation pattern and current density plots of the antenna at 2.4 GHz and 2.55 GHz are also presented. The peak realized gain of the proposed antenna varies from 4.17 dB to 4.84 dB in the desired operating band.

Index Terms: Broad Frequency Bands, Impedance Bandwidth, Low-profile Geometry, Planar Inverted-F Antenna, LTE/WLAN.

I. INTRODUCTION

The rapid decrease in size of personal communication devices has lead to the need for more compact antennas. At the same time, expansion of wireless systems has increased the applications for multi-functional antennas that operate over broad frequency bands or multiple independent bands. In the past few years, new designs based on planar inverted-F antennas (PIFA) have been used for handheld wireless devices because of its low-profile geometry. The PIFA can be considered a direct extension of the inverted-F antenna that has the horizontal wire radiating element replaced by a plate to increase its usable bandwidth. PIFA designs invoke the quarter-wavelength operation. Additionally, the PIFA offers very high radiation efficiency and sufficient bandwidth in a compact antenna.

Technique like use of reduced ground plane can to be employed to further increase the bandwidth [1], [2]. Multi-frequency capability with the antenna structure can be achieved by exciting various resonant modes using branched structure, created by cutting slots in the radiating element [3]-[6]. Several PIFA structures have been developed in the past to cover various communication frequency bands [7]-[15].

In this paper a Planar Inverted-F Antenna for LTE2300, WLAN, and LTE2500 has been presented. The proposed structure is having an impedance bandwidth ranging from 2.16 GHz to 2.726 GHz covering all the desired frequency bands. The antenna has a resonating frequency at 2.395GHz frequency. Section 2 of the paper gives the details of the proposed structure. Results and discussion are included in section 3 of this paper.
II. ANTENNA DESIGN

The antenna structure is designed with Ansoft’s HFSS [16]. The antenna is designed at the top right corner of FR4 substrate of size \(W_s \times L_s \) mm\(^2\). The antenna element is at a height of 4 mm above the substrate. At the bottom side of the substrate, ground plane is placed. The antenna element is connected to the ground plane by a shorting strip of width \(W_{sh} \). The shorting strip is placed along the width of the substrate. In order to get the resonance at the desired frequency, slot loading is done in the antenna patch. The antenna is fed by a coaxial cable at a place where impedance matching is proper. The top view and side view of the proposed antenna structure is given in Fig. 1 and Fig. 2 respectively. Fig. 3 shows the detailed dimensions of the antenna patch. The optimized parameters of the proposed structure are given in Table 1.

![Figure 1: Top View of the Proposed Antenna Structure](image)

![Figure 2: Side View of the Proposed Antenna Structure](image)

![Figure 3: Detailed Dimensions of Antenna Patch.](image)

Table 1: Optimized antenna dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Size (mm)</th>
<th>Parameter</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_s)</td>
<td>50</td>
<td>(W_{s1})</td>
<td>8.25</td>
</tr>
<tr>
<td>(L_s)</td>
<td>100</td>
<td>(L_{s1})</td>
<td>1</td>
</tr>
<tr>
<td>(H)</td>
<td>4</td>
<td>(W_{s2})</td>
<td>1.25</td>
</tr>
<tr>
<td>(W_{sh})</td>
<td>2</td>
<td>(L_{s2})</td>
<td>8.5</td>
</tr>
<tr>
<td>(W_p)</td>
<td>13</td>
<td>(W_{s3})</td>
<td>5.25</td>
</tr>
<tr>
<td>(L_p)</td>
<td>18</td>
<td>(L_{s3})</td>
<td>2.5</td>
</tr>
<tr>
<td>(W_{pr})</td>
<td>1</td>
<td>(L_{1})</td>
<td>2</td>
</tr>
<tr>
<td>(L_{pr})</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. RESULTS AND DISCUSSION

The simulations are performed in Ansoft’s HFSS [16] (considering SMA connector) to optimize the shape parameters of the antenna for the desired operating bands.

A. Return Loss

The return loss characteristics of the proposed antenna are shown in Fig. 4. The impedance bandwidth of the proposed design is from 2.16 GHz to 2.726 GHz covering LTE2300 (2300 -2400 MHz), WLAN (2.4- 2.484 GHz) and LTE2500 (2500 -2690 MHz) bands. At 2.395 GHz frequency, resonance is better. This is because of proper impedance matching at this frequency. For getting the impedance bandwidth we are taking -8 dB as the reference return.
loss, which is acceptable for mobile phone applications.

B. Voltage Standing Wave Ratio (VSWR)

The VSWR characteristics of the proposed antenna are presented in Fig. 5. It can be seen that for the operating frequency range the VSWR is less than 2.5. At the resonance frequency, VSWR is 1.025, which shows the perfect matching at the antenna input port.

C. Input Impedance (Z_{in})

The input impedance of the proposed structure for the operating frequency range is shown in Fig. 6. It can be seen that the resistive part (real) of the impedance is varying near 50 Ω and the reactive part (imaginary) is varying near 0 Ω. This behavior is desirable to get proper impedance matching at the port.

IV. PARAMETRIC STUDY OF THE PROPOSED ANTENNA

Parametric investigation of some key parameters of the antenna is carried out in order to analyze the effect of various parameters on the operating frequency.

A. Effect of Varying ‘H’

The effect of variation in air gap between the antenna patch and ground on the return loss characteristics are given in Fig. 7. It can be seen that with the increase in H, resonant frequency of the antenna is shifting towards the lower frequency side. Better results are obtained for an optimized value of H i.e. 4 mm.
B. **Effect of Varying ‘Wp’**

The effect of varying the width of the patch is represented in Fig. 8. As we know that with the increase in Wp, wavelength increases and thus the frequency decreases. This can easily be seen from the figure that with the increase in Wp, resonating frequency is shifting towards lower frequency side. However impedance bandwidth remains same. Wp is taken as 13 mm for the optimized design.

![Figure 8: Effect of varying ‘Wp’ on the antenna characteristics.](image)

C. **Effect of Varying ‘Lp’**

The effect of varying the length of the patch is represented in Fig. 9. As we know that with the increase in Lp, again wavelength increases and thus the frequency decreases. This can easily be seen from the figure that with the increase in Lp, resonating frequency is shifting towards lower frequency side. However impedance bandwidth remains same. Lp is taken as 18 mm for the optimized design.

![Figure 9: Effect of varying ‘Lp’ on the antenna characteristics.](image)

D. **Effect Of Varying ‘Wsh’**

The effect of varying the width of the shorting strip is represented in Fig. 10. This can easily be seen from the figure that with the increase in Wsh, resonating frequency is shifting towards higher frequency side. However impedance bandwidth remains same. For the optimized design the Wsh is taken 2 mm.

![Figure 10: Effect of varying ‘Wsh’ on the antenna characteristics.](image)

E. **Effect of Varying ‘Ws1’**

The effect of varying the length of the first slot is represented in Fig. 11. This can easily be seen from the figure that with the increase in Ws1, resonating frequency is shifting towards higher frequency side. The value of return loss is going up with this increase means power loss is increasing. For the optimized design the Ws1 is taken as 8.25 mm.

![Figure 11: Effect of varying ‘Ws1’ on the antenna characteristics.](image)
F. Effect of Varying ‘Ls2’

The effect of varying the length of the second slot is represented in Fig. 12. This can easily be seen from the figure that with the increase in Ls2, resonating frequency is shifting towards lower frequency side. For the optimized design the Ls2 is taken as 8.5 mm.

G. Effect of Varying ‘Ws3’

The effect of varying the length of the third slot is represented in Fig. 13. This can easily be seen from the figure that with the increase in Ws3, resonating frequency is shifting towards lower frequency side. For the optimized design the Ws3 is taken as 5.25 mm.

H. Effect of Varying ‘Lpr’

The effect of variation in position of the coaxial probe along the length of the patch is shown in Fig. 14. It can be seen from the figure that with an increase in Lpr, the resonant frequency is shifting towards the higher frequency side of the frequency spectrum. The value of return loss is improving with an increase in Lpr. It is clearly visible from the figure that desired return loss characteristics is obtained for Lpr = 6 mm.

I. Radiation Pattern

The radiation patterns of the proposed antenna are plotted in XZ-plane (phi = 0°) and in YZ-plane (phi = 90°) at 2.4 GHz and 2.55 GHz, and are shown in Fig. 15 and Fig. 16 respectively. At 2.4 GHz, main beam is located at theta = 35° with a null at theta = -120° and there is a presence of back lobe in the YZ-plane. Almost similar radiation pattern is obtained at 2.55 GHz.
J. Current Density Plot

The plot of current density over the antenna patch and ground at 2.4 GHz and 2.55 GHz are shown in Fig. 17 and 18 respectively. It can be seen that maximum current is concentrated near the slot structure present in the patch.

K. Peak Realized Gain

The Peak Realized Gain of the proposed antenna is plotted against frequency and is shown in Fig. 19. The value of Peak Realized Gain varies from 4.17 dB to 4.84 dB in the desired operating band.

REFERENCES

